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René Blattmann,Victoria Goode, Marcel Marghitola,
Hubert Kaeslin, Norbert Felber, Wolfgang Fichtner

Integrated Systems Laboratory
ETH Zurich

2. February 2006



Table of Contents

1 Overview

2 Methodology

3 Algorithms

4 Efficiency in Hardware

5 Results

6 Conclusions

Integrated Systems Laboratory 2 / 28    Department of Information Technology
and Electrical Engineering Zurich



Implementing eSTREAM Candidates

eSTREAM candidates (34)

ABC Achterbahn CryptMT/Fubuki DECIM DICING DRAGON
Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG
MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear
POMARANCH Py Rabbit Salsa20 SFINKS SOSEMANUK SSS
TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

Algorithms that support only Profile-II

Algorithms without any cryptological issues

Algorithms which are not likely to get updates

Once these are completed, look for additional algorithms that
seem easy to implement.
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Compare against an AES core running in OFB mode
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Fair Comparison

The following factors may have significant effect on the outcome
of a hardware design:

The experience of the designer

Implementation platform/technology
FPGA (which device?, how are the resources used?),
ASIC (which technology?)

Project schedule

In this project

All designs were implemented by a group of 4 students:

with equal experience

using a standard cell based ASIC design flow

within 14 weeks
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Methodology

Tools

Description: Code written in VHDL

Simulation: Mentor Graphics Modelsim 6.0c

Logic Synthesis: Synopsys Design Vision-2004.12

Physical Design: Cadence SoC Encounter 4.1-usr4

Technology: UMC 0.25 µm 5-Metal CMOS

Guidelines for design

The provided C code has been used as a reference

All synthesized algorithms include test structures

No ROM macros were used

Optional MAC support is not included

All algorithms accept plaintext and deliver ciphertext
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Performance Metrics

Circuit performance will be measured by:

A Total circuit area after synthesis in µm2

f Maximum clock rate in MHz

P Power consumption in mW

Radix Generated output bits per clock cycle

T Throughput in Gbits/s

TpA Throughput per area in Gbits/s·mm2

E Energy per data item mJ/Gbits
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AES

Radix 3.12

FFs 265

A 300k µm2

T 0.665 Gb/s

State Register (128 FF)

Mixcolumns

Round Key Generator
(128 FF)

Sbox Sbox Sbox Sbox
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IV Key
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128

Advanced Encryption Standard

More experience with implementing AES
Highly optimized

32-bit datapath

on-the-fly key generation
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Achterbahn

Radix 1-16

FFs 285

A 191k-480k µm2

T 0.310-1.423 Gb/s

NLFSR A (22 FF)

NLFSR B (23 FF)

NLFSR C (25 FF)

NLFSR D (26 FF)

NLFSR E (27 FF)

NLFSR F (28 FF)

NLFSR G (29 FF)

NLFSR H (31 FF)
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X Very good documentation and reference code

X Good performance trade-off

Con

x Low throughput

x Large area
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Grain

Radix 1-16

FFs 166

A 65k-135k µm2

T 0.280-4.00 Gb/s

H(x)

NFSR
(80 FF)

LFSR
(80 FF)

F(x)G(x)

41
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Key
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7

Pro

X Small area

X High throughput

X Very simple and straightforward architecture

Con

x Only moderate performance trade-off
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Mickey

Radix 1

FFs 170

A 87k µm2

T 0.307 Gb/s

Control
(3FF)

CTR
(8FF)

R Register
(80 FF)

S Register
(80 FF)

R
S

 C
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u
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80
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1 1
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CiphertextPlaintext

Key

IV

Pro

X Very ’hardware friendly’ documentation

X Very compact

Con

x Low throughput

x Difficult to parallelize/increase radix
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Mosquito

Radix 1,3

FFs 411

A 222k-377k µm2

T 0.300-0.870 Gb/s
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X Simple logic structure
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x Difficult to parallelize

x Low throughput

x Large area
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Sfinks

Radix 1-16

FFs 289-754

A 123k-696k µm2

T 0.180-2.500 Gb/s

Control

Delay
(96FF)

Delay
(6FF)

F16

Inverse

16

16

1616 1

1

1

2

1 1

LFSR
(256 FF)

1

7
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Key

IV

Plaintext Ciphertext

Pro

X Easy to follow documentation

Con

x Additional hardware for initialization

x Complex inverse function, not well described in documentation
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Trivium

Radix 1-64

FFs 295

A 90k-150k µm2

T 0.313-26.600 Gb/s

LFSR 
(93 FF)

LFSR 
(84 FF)

LFSR 
(111 FF)

AND AND AND

Key IV80 64
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Pro

X Very high throughput

X Small area

Con

x Bad performance/area trade-off

x Reference C code has no comments, difficult to understand
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Vest

Radix 4-32

FFs 266-778

A 214k-620k µm2

T 1.250-10.000 Gb/s
4,16,32 4,16,32

Output 
Combiner
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Vest4:  83 FF
Vest16: 331 FF
Vest32: 587 FF

RNS Counters
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Plaintext Ciphertext

Pro

X High throughput

Con

x Complex algorithm, difficult to write VHDL code

x Better suited to FPGAs, many look-up tables

x Large area

Integrated Systems Laboratory 15 / 28    Department of Information Technology
and Electrical Engineering Zurich



ZK-Crypt

Radix 32

FFs 189

A 135k µm2

T 7.451 Gb/s

LFSR (13 FF)

LFSR (19 FF)

LFSR (18 FF)

LFSR (14 FF)

LFSR (15 FF)

LFSR (17 FF)

Rotated /RND XORed Rotated /RND XORed Rotated /RND XORed

(32 FF)
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Pro

X Very good performance

X No initialization sequence

Con

x Unacceptable documentation

x Difficult to implement
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Initialization

Control

Delay
(96FF)
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Example Sfinks

15 out of 16 outputs of the inverse is not used for cipher

The output of the inverse needs to be delayed by 6 cycles

The initial state of the registers can be loaded directly

This increases efficiency by 30%
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The initial state of the registers can be loaded directly

This increases efficiency by 30%
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Stage Delay

FO4 delay UMC 0.25 µm Design Style Difficulty

10-20 1GHz-500MHz Custom ASIC State of the art

20-50 500MHz-200MHz Custom/Std. Cell Very challenging

50-100 200MHz-100MHz Fast Std. Cell Involved

100-500 100MHz-20MHz Basic Std. Cell Standard

500+ ≤ 20MHz Basic Std. Cell Easy

Each technology has a comfort zone for clock frequency

Physical design effort for fast designs becomes
disproportionately high

For UMC 0.25 µm, FO4 delay is 0.1 ns.
Clock frequency should not exceed 200 MHz by much.
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Sherlock and Watson

Sherlock

AES, Sfinks, Vest8, Vest16,
ZK-Crypt

Watson

Achterbahn, Grain, Mickey,
Mosquito, Vest4, Trivium
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Area vs Time required to process 1 Gbit
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Throughput per Area

Integrated Systems Laboratory 22 / 28    Department of Information Technology
and Electrical Engineering Zurich



Energy required to process 1 Gbit

Integrated Systems Laboratory 23 / 28    Department of Information Technology
and Electrical Engineering Zurich



Concluding Remarks

Final words

There are several eSTREAM candidates which are smaller,
have a higher throughput and consume less power than
AES.

Without knowing their cryptographic qualities, it is
inappropriate to rate the algorithms solely based on their
hardware performance.

As hardware designers, we favor designs which offer a broad
range of trade-offs between area and throughput.

Sherlock and Watson are expected back from manufacturing
May 2006.

This presentation and additional results are available at:

http://asic.ethz.ch/estream
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Post-layout Results

Algorithm A f T TpA P E

(µm2) (MHz) (Gb/s) (Gb/s·mm2) (mW) (mJ/Gb)

AES (Ofb) 308,286 213 0.620 2.010 294 476

Achterbahn 225,966 302 0.562 2.487 114 204

Grain 129,579 336 5.007 38.641 136 27

Mickey 88,118 317 0.296 3.357 79 267

Mosquito 385,752 287 0.802 2.079 319 398

Sfinks 391,850 162 1.209 3.086 387 320

Trivium 151,628 400 23.842 157.239 189 8

Vest 421,811 328 4.892 11.598 372 76

ZK-Crypt 137,182 250 7.434 54.190 82 11
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Area
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Maximum clock frequency
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Power consumption
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