

Hardware Evaluation of eSTREAM Candidates

Frank K. Gürkaynak, Peter Luethi, Nico Bernold, René Blattmann, Victoria Goode, Marcel Marghitola, Hubert Kaeslin, Norbert Felber, Wolfgang Fichtner

> Integrated Systems Laboratory ETH Zurich

> > 2. February 2006

Table of Contents

- 1 Overview
- 2 Methodology
- 3 Algorithms
- 4 Efficiency in Hardware
- 5 Results
- 6 Conclusions

eSTREAM candidates (34)

ABC Achterbahn CryptMT/Fubuki DECIM DICING DRAGON Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear POMARANCH Pv Rabbit Salsa20 SFINKS SOSEMANUK SSS TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

< 67 →

eSTREAM candidates (12)

ABC Achterbahn CryptMT/Fubuki DECIM DICING DRAGON Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear POMARANCH Py Rabbit Salsa20 SFINKS SOSEMANUK SSS TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

■ Algorithms that support only Profile-II

eSTREAM candidates (10)

ABC Achterbahn CryptMT/Fubuki DECIM DICING DRAGON Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear POMARANCH Py Rabbit Salsa20 SFINKS SOSEMANUK SSS TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

- Algorithms that support only Profile-II
- Algorithms without any cryptological issues

eSTREAM candidates (7)

Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear POMARANCH Pv Rabbit Salsa20 SFINKS SOSEMANUK SSS TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

- Algorithms that support only Profile-II
- Algorithms without any cryptological issues
- Algorithms which are not likely to get updates

eSTREAM candidates (8)

ABC Achterbahn CryptMT/Fubuki DECIM DICING DRAGON Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear POMARANCH Py Rabbit Salsa20 SFINKS SOSEMANUK SSS TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

- Algorithms that support only Profile-II
- Algorithms without any cryptological issues
- Algorithms which are not likely to get updates
- Once these are completed, look for additional algorithms that seem easy to implement.

eSTREAM candidates (8)

ABC Achterbahn CryptMT/Fubuki DECIM DICING DRAGON Edon80 F-FCSR Frogbit Grain HC-256 Hermes8 LEX MAG MICKEY Mir-1 MOSQUITO NLS Phelix Polar Bear POMARANCH Pv Rabbit Salsa20 SFINKS SOSEMANUK SSS TRBDK3 YAEA Trivium TSC-3 VEST WG Yamb ZK-Crypt

- Algorithms that support only Profile-II
- Algorithms without any cryptological issues
- Algorithms which are not likely to get updates
- Once these are completed, look for additional algorithms that seem easy to implement.

The following factors may have significant effect on the outcome of a hardware design:

■ The experience of the designer

The following factors may have significant effect on the outcome of a hardware design:

- The experience of the designer
- Implementation platform/technology FPGA (which device?, how are the resources used?), ASIC (which technology?)

The following factors may have significant effect on the outcome of a hardware design:

- The experience of the designer
- Implementation platform/technology FPGA (which device?, how are the resources used?), ASIC (which technology?)
- Project schedule

The following factors may have significant effect on the outcome of a hardware design:

- The experience of the designer
- Implementation platform/technology FPGA (which device?, how are the resources used?), ASIC (which technology?)
- Project schedule

In this project

All designs were implemented by a group of 4 students:

- with equal experience
- using a standard cell based ASIC design flow
- within 14 weeks

Methodology

Tools

Description: Code written in VHDL

Simulation: Mentor Graphics Modelsim 6.0c

Logic Synthesis: Synopsys Design Vision-2004.12

Physical Design: Cadence SoC Encounter 4.1-usr4

Technology: UMC 0.25 µm 5-Metal CMOS

Methodology

Tools

Description: Code written in VHDL

Simulation: Mentor Graphics Modelsim 6.0c

Logic Synthesis: Synopsys Design Vision-2004.12

Physical Design: Cadence SoC Encounter 4.1-usr4

Technology: UMC 0.25 µm 5-Metal CMOS

Guidelines for design

- The provided C code has been used as a reference
- All synthesized algorithms include test structures
- No ROM macros were used
- Optional MAC support is not included
- All algorithms accept plaintext and deliver ciphertext

The Team

Sherlock Nico Bernold René Blattmann

Watson Victoria Goode Marcel Marghitola

 7^{th} semester students of the Information Technologies and Electronics Department of the ETH Zurich.

Performance Metrics

Circuit performance will be measured by:

- A Total circuit area after synthesis in μm²
 - f Maximum clock rate in MHz
- P Power consumption in mW

Radix Generated output bits per clock cycle

Performance Metrics

Circuit performance will be measured by:

- A Total circuit area after synthesis in µm²
 - f Maximum clock rate in MHz
- P Power consumption in mW
- Radix Generated output bits per clock cycle
 - **T** Throughput in Gbits/s
 - **TpA** Throughput per area in Gbits/s·mm²
 - **E** Energy per data item mJ/Gbits

AES

Radix 3.12

FFs 265

A 300k μm²

T 0.665 Gb/s

Advanced Encryption Standard

- More experience with implementing AES Highly optimized
- 32-bit datapath
- on-the-fly key generation

Achterbahn

Radix 1-16

FFs 285

A $191k-480k \ \mu m^2$

T 0.310-1.423 Gb/s

Pro

- √ Very good documentation and reference code
- √ Good performance trade-off

Con

- x Low throughput
- x Large area

Grain

Radix 1-16

FFs 166

A 65k-135k μm²

T 0.280-4.00 Gb/s

Pro

- √ Small area
- √ High throughput
- √ Very simple and straightforward architecture

Con

x Only moderate performance trade-off

Mickey

Radix 1

FFs 170

A $87k \mu m^2$

T 0.307 Gb/s

Pro

- √ Very 'hardware friendly' documentation
- √ Very compact

Con

- x Low throughput
- x Difficult to parallelize/increase radix

Mosquito

Radix 1.3

FFs 411

A 222k-377k μm²

T 0.300-0.870 Gb/s

Pro

Simple logic structure

Con

- x Difficult to parallelize
- x Low throughput
- x Large area

Sfinks

Radix 1-16

FFs 289-754

A 123k-696k μm²

T 0.180-2.500 Gb/s

Pro

√ Easy to follow documentation

Con

- x Additional hardware for initialization
- x Complex inverse function, not well described in documentation

Trivium

Radix 1-64

FFs 295

A 90k-150k μm²

T 0.313-26.600 Gb/s

Pro

- √ Very high throughput
- √ Small area

Con

- x Bad performance/area trade-off
- x Reference C code has no comments, difficult to understand

Vest

Radix 4-32

FFs 266-778

A 214k-620k μm²

T 1.250-10.000 Gb/s

Pro

√ High throughput

Con

- x Complex algorithm, difficult to write VHDL code
- x Better suited to FPGAs, many look-up tables
- x Large area

ZK-Crypt

Radix 32

FFs 189

A $135k \mu m^2$

T 7.451 Gb/s

Pro

- √ Very good performance
- √ No initialization sequence

Con

- x Unacceptable documentation
- x Difficult to implement

Initialization

Example Sfinks

- 15 out of 16 outputs of the inverse is not used for cipher
- The output of the inverse needs to be delayed by 6 cycles

Initialization

Example Sfinks

- 15 out of 16 outputs of the inverse is not used for cipher
- The output of the inverse needs to be delayed by 6 cycles
- The initial state of the registers can be loaded directly
- This increases efficiency by 30%

Stage Delay

FO4 delay	UMC 0.25 μm	Design Style	Difficulty	
10-20	1GHz-500MHz	Custom ASIC	State of the art	
20-50	500MHz-200MHz	Custom/Std. Cell	Very challenging	
50-100	200MHz-100MHz	Fast Std. Cell	Involved	
100-500	100MHz-20MHz	Basic Std. Cell	Standard	
500+	≤ 20MHz	Basic Std. Cell	Easy	

- Each technology has a **comfort zone** for clock frequency
- Physical design effort for fast designs becomes disproportionately high
- For UMC 0.25 µm, FO4 delay is 0.1 ns. Clock frequency should not exceed 200 MHz by much.

Radix

Sherlock and Watson

Sherlock

AES, Sfinks, Vest8, Vest16, ZK-Crypt

Watson

Achterbahn, Grain, Mickey, Mosquito, Vest4, Trivium

Area vs Time required to process 1 Gbit

Area vs Processing Time for eSTREAM candidates

Throughput per Area

Energy required to process 1 Gbit

Concluding Remarks

Final words

- There are several eSTREAM candidates which are smaller, have a higher throughput and consume less power than AFS.
- Without knowing their cryptographic qualities, it is inappropriate to rate the algorithms solely based on their hardware performance.
- As hardware designers, we favor designs which offer a broad range of trade-offs between area and throughput.
- Sherlock and Watson are expected back from manufacturing May 2006.
- This presentation and additional results are available at:

http://asic.ethz.ch/estream

Post-layout Results

Algorithm	Α	f	Т	ТрА	Р	E
	(μm^2)	(MHz)	(Gb/s)	$(Gb/s{\cdot}mm^2)$	(mW)	(mJ/Gb)
AES (Ofb)	308,286	213	0.620	2.010	294	476
Achterbahn	225,966	302	0.562	2.487	114	204
Grain	129,579	336	5.007	38.641	136	27
Mickey	88,118	317	0.296	3.357	79	267
Mosquito	385,752	287	0.802	2.079	319	398
Sfinks	391,850	162	1.209	3.086	387	320
Trivium	151,628	400	23.842	157.239	189	8
Vest	421,811	328	4.892	11.598	372	76
ZK-Crypt	137,182	250	7.434	54.190	82	11

Area

Maximum clock frequency

Power consumption

